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REeFLECTION DETUNING FACTOR

The detuning factor 5, is defined as the fractional change in the
two-port input reflection coefficient with respect to the fractional
change in the output load reflection coefficient, i.e.,
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This is the limiting value of the load reflection coefficient.
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Equivalent Circuits of Microstrip Impedance
Discontinuities and Launchers

J. 8. WIGHT, sTupENT MEMBER, mEEE, O. P. JAIN,
W. J. CHUDOBIAK, MEMBER, IEEE, AND
V. MAKIOS, MEMBER, IEEE

Abstract—Experimental results obtained indicate that an excess
phase shift is the most pronounced high-frequency parasitic effect
resulting from a microstrip quarter-wave transformer impedance
discontinuity. An empirically derived design-oriented model de-
scribing the dominant parasitic reactances associated with a micro-
strip impedance discontinuity at X-band frequencies is described.
A description is also given of the dominant parasitic reactances
associated with a number of commercially available coaxial-to-
microstrip launchers. ‘

I. INTRODUCTION

A number of authors [17-[3] have considered the parasitics
associated with impedance discontinuities (such as quarter-wave
transformers) in stripline transmission lines. However, very little
has been reported concerning impedance discontinuities in miecro-
strip transmission lines [4]. Experimental results obtained by the
present authors indicate that an excess phase shift is the most pro-
nounced high-frequency parasitic effect resulting from impedance
discontinuities such as in quarter-wave transformers. An empirically
derived design-oriented model deseribing the dominant parasitic
reactances associated with a microstrip impedance discontinuity at
X-band frequencies is described in this short paper. The model is
based on the stripline impedance discontinuity analysis reported by
Altschuler and Oliner [1], the effective linewidth analysis reported
by Leighton and Milnes [4], and the open-circuited transmission
line analyses by Altschuler and Oliner [1] and Jain ef al. [57]. It is
shown that the model is valid for characteristic impedance values
ranging from 10 to 130 Q. A description is also given of the dominant
parasitic reactances associated with a number of commercially
available coaxial-to-microstrip launchers in high VSWR applications
(VSWR > 2). The technique used to characterize the launchers is
similar to that reported by Weissfloch [67, except that the equiva-
lent-circuit form and parameter values are determined using a
simple graphiecal technique.

II. ExperiMeNTAL TECHNIQUES AND LAUNCHER KEQUIVALENT
Crrcurrs

The experimental data reported in this short paper were obtained
using structures of the form shown in Fig. 1 and the HP 8410 net-
work analyzer. Published e models [7], [8] and experimental
resonant ring techniques [9] were used to accurately determine the
effective electrical lengths of the various sections of the transformer
structures. Traveling microscope measurements of a tolerance of
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Fig. 1. Measured and calculated impedance values (including only
dispersion) for transformer structures on thin plastic substrates
(f = 10 GHz, ¢, = 2.3, A = 10 mil). (a) Launcher OSM 244—4A. (b)

Launcher ARM 2052-1122.

+0.001x were conducted and deviations from the required dimen-
sions were accounted for.

‘Measured and calculated transformed impedance values for a
number of different transformer structures on substrates of various
thicknesses and dielectric constants and utilizing a number of differ-
ent launchers are compared in Fig. 1 and Tables I and II. It is seen
in Fig. 1 that the measured load reactance value varies with the
type of microstrip launcher used. A two-element equivalent. circuit
of the launcher reactive parasitics is developed in.this section using
a simple graphical-experimental technique rather than Weissfloch’s
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_TABLE I

MeasurRep AND CarncunaTep Loap IMPEDANCE VALUES FOR
TRANSFORMER STRUCTURES (SEE Fig. 1) oN ArntvmiNa
SusstrRaTES (f = 10°GHz, ¢, = 9.9, & = 10 ML) UsiNg
Launcuer OSM 244-4A .

Characteristic Impedance
of Transformer Seetion
Zy (@) 9.7 11.5 14.8 19.9
Measured 2.1 4+ 3.0 + 4.6 4 8.5 +
723 j18 523 320

Caleulated (including dis- (1.8 4+ 2.5 — 4.3+ 8.6 +
persion only) 71.3 735 Jj4.5 73.5

Calculated (including dis- (2.0 + 2.5+ 4.0.4+ 9.6 4
persion and launcher 716 Jit 7196 719.4
parasitics) ) ’

Calculated (including dis- 2.0 + 3.1+ 4.54 9.6 +
persion, launcher para- 722 . j16.2 j22.4 722
sitics, and impedance - :
discontinuity parasitics)

TABLE II

MzEasURED AND Cancunatep  Loap IMPEDANCE VALUES FOR
TransroRMER STRUCTURES (SEE Fia. 1) on Tmin- Puasrtic
SuBsTRATES (f = 10 GHz, ¢, = 2.3, h = 10 ML) UsiNag
LauncHER ARM 2052-1122

Characteristic Impedance
of Transformer Section i
Za Q) 10.1 16.5 17.6 23
Measured 10 + 11+ 14 + 29 +
: J78 j74 j70 © 760
Calculated (including dis- (2.4 — 4.2+ 6.2 — 11.6' 4+
persion only) - 70.8 70.9 j1:5 70.0
Calculated (including dis- 6.0 + 13 4 18 + 34 +
‘persion and launcher 754 756 749 746
parasities)
Caleulated (in¢luding dis- |11 + 14 + 23 + 38 4
" persion, launcher para- 780 768 764 753
sitics, and impedance C
~ discontinuity parasitics)

[6] iterative technique, which yields a three-element equivalent
circuit.

The launcher characterization technique consists of using the
launcher to make input impedance measurements on various lengths
of open-circuited 50-2 line (A/8 < L < a). The measurement pro-
cedure differs from Weissfloch’s to the extent that the measurement
point and the reference plane coincide, thus eliminating the require-
ment for an analytical transformation. ‘

The variation of the excess phase angle (measured input reflection-
coefficient phase angle minus calculated input reflection-coefficient
phase angle) versus the electrical length of the open-circuited line
is shown in Fig. 2(a). The cyclical variation (within experimental
error limits) exhibited in Fig. 2(a) may be used to synthesize a
two-element equivalent circuit of the launcher [Fig. 2(b)7] using
the following argumentation. It is evident from a consideration of a
transmission line immittance chart that for measured input reflec-
tion-coefficient phase sngles in the range of say +30°, the phase
angle is relatively insensitive to variations of series reactance at the
reference plane, whilé the phase angle is extremely sensitive to varia-
tions of the shunt reactance at the reference plane.” | ’

. Similarly, it is seen that -for input reflection-coefficient phase
angles of 180 F 30°, the phase angle is relatively insensitive to
yariations of the shunt reactance, while being extremely sensitive to
variations of ‘the series reactance. The equivalent circuit shown in
Fig. 2(b) follows from the knowledge that the excess phase angle
at a line length of X/2 is due almost entirely to the launcher shunt
capacitance, while at \/4 it is due alinost entirely to the launcher
series inductance, a constant phase value in both cases being .ac-
cotinted for'by the open-end effect [51, [107-[127. Numerical values
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Fig. 2. (a) Excess phase angle for an open-circuited line determined
using an OSM 244-4A launcher (f = 10 GHz, ¢, = 2.3, b = 10 mil).

(b) Equivalent circuit of the microstrip launcher interface.

for. wL; and «Cp can be conveniently obtained by plotting the
experimental data, as shown in Fig. 3(a), and superimposing the
data for the electrical lengths N/4 and A/2 on a transmission line
chart, as shown in Fig. 3(b). The wL; and «Cy values at 10 GHz
for typical launcher/substrate combinations are tabulated in Table
I11. :

The calculated transformed load impedance values shown in
Fig. 1(a) (which do not include either launcher or impedance dis-
continuity parasitic reactances) are reproduced in Fig. 4(a), along
with calculated impedance values which include the effect of the
aluncher parasitics. Similar data are represented in Fig. 4(b) for
another common launcher/substrate combination. From Fig. 4 (and
Tables I and IT) it is seen that even with the inclusion of the launcher
parasitics, there remains an excess phase shift between measured
and predicted impedance values. Since the launcher characteristics
are well understood and since the microstrip wavelength is' known
to a high degree of accuracy, the remaining excess phase shift can
only be-due to a reactance associated with impedance discontinu-
ities. An equivalent circuit of & microstrip impedance discontinuity
is derived in the following section. - ) :

III. ImpeDANCE DISCONTINUITY Equivarent Crrcurr

Parasitic reactances are associated with an impedance disconti-
nuity in ‘a microstrip transmission line since there are longitudinal
components-of both the electric and magnetic fields. Altschuler and
Oliner [17] have shown that the following equation adequately de-
scribes the discontinuity series reactance for stripline structures:

2Z01W1* T WZ*
L = ~———1In| cosec | ——= 1
e W 2 W/ )
where ‘
wl impedance discontinuity series reactance;
Zn characteristic impedance of the transformer section;
Wi,*  equivalent stripwidth; :
A wavelength. '

The results reported later in this short paper indicate that this
equation also adequately describes the discontinuity series reactance
for microstrip transmission line structures, provided that the equiva~
lent stripwidth terms Wy* and W* are represented by the following
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Fig. 3. (a) Graphical determination of launcher equivalent-circuit
parameters from excess phase-angle plots for an open-circuited line
with an OSM 244-4A launcher at 10 GHz (¢, = 2.3, h = 10 mil).
Experimental points for A\/2 < L < A suFer;mposed on points for
A/8 < L =< X/2. (b) Graphical technique for determining numerical
values of launcher parasitics wLy, and wCr. . CE

TABLE III

LavuNcaER EqQuivanent-CiRcuir PARAMETERS FOR VARIOUS
LauNceer/SuBsTRATE CoMBINATIONS AT 10 GHz

" OSM 244-4A ARM 2052-1124
Launcher wLy, w(Cy, wly » wCr,

Substrate : Q) (mmbho) [(9)] (mmho)
& = 2.3, h = 10 mil 14.2 2.9 31 14.5
& = 9.9, 4 = 25 mil 9.0 1.1 50 7.0
& = 9.9, h.= 10 mil 14.5 2.3 60 8.0

expression for microstrip reported by Leighton and Mﬂnes, [47:

- _' hR. <’_1_)x/z

Z(m éeff

(n =12) 2)
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Fig. 4. Measured and calculated impedance values (including_either
only dispersion or dispersion and launcher parasitics as indicated)
for transformer structures on plastic and alumina substrates at 10
GHz. (a) Launcher OSM 244-4A, ¢ = 2.3, h = 10 mil. (b) Launcher
OSM 244-4A, ¢, = 9.9, B = 25 mil,

where

h  substrate thickness;

R. free-space wave impedance;

€atf ieffective dielectric constant of the microstrip transmission
ine;

Zn characteristic impedance of quarter-wave transformer sec-
tion (see Fig. 5);

Zpe characteristic impedance of lines adjacent to transformer
section (see Fig. 5).

The effect of a longitudinal compbnent of the electric field for an
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Equivalent circuits of microstrip transformer
discontinuity parasitics (with launcher parasitics).

impedance

open-circuited stripline has been described by Altschuler and Oliner
[1] as an apparent increase of the line length. Farrar and Adams
[107] have shown, using numerical techniques, that the effect of the
longitudinal line component of the electric field at a microstrip
impedance discontinuity may be represented as a shunt capacitance.
The present authors have found that if the microstrip impedance
step discontinuity is approximated by an open circuit, then the
following equation first given by Altschuler and Oliner [1] may be
used to account for the longitudinal component, provided that the
ground-plane separation term b is replaced by 2k in the expression
for the parameter C' as shown below

C +2W
al=0 [40 + 2W] @)

where

Al apparent increase in length of the center conductor due to
fringing field;
W linewidth;
hln4
c = .

K

The value given by (3) may readily be converted into an equivalent
shunt-susceptance: value «C for application in the impedance dis-
continuity equivalent circuits shown in Fig. 5. These «C values
agree within 0.5 mmho with that predicted by the numerical
model of Farrar and Adams [107. However, as is shown in the fol-
lowing paragraph, the contribution of the «C parasitic to the over=
all excess phase shift is small in comparison with the wL contribution.

The transformed load impedances shown in Fig. 4 are reproduced
in Fig. 6 and modified by the addition of the L and «»C values
given by (1) and (3). It is seen that with the addition of the oL
and wC effects (primarily the former since it accounts for a much
larger excess phase angle), the discrepancy between the two cases
shown in Fig. 4 is accounted for very accurately,

Calculated transformed impedance values shown in Fig. 6 account
for launclier parasitics, impedance discontinuity parasitics, and dis-
persion of the microstrip transmission line dielectric constant. The
relative importance of the various factors is apparent from Figs.
4 and 7, where it is seen that the effect of dispersion is minimal
when compared with that of wL.

IV. CoNCLUSIONS

A description is given of a relatively simple experimental-graph-
jcal technique which yields a two-element equivalent circuit of the
reactive parasitics of a microstrip launcher in a high VSWR line
(VSWR > 2) at a specified frequency. It is demonstrated that the
reactive parasitics contribute a significant excess phase component
(of the order of 20°) to-the measured reflection coeflicient when the
launcher is used in a measurement on a microstrip circuit.

It was also demonstrated that a number of empirically derived
equations, originally developed for describing stripline impedance
discontinuities,  adequately model the reactive parasitics associated
with microstrip impedance discontinuities, provided that a number
of modifications are performed. The validity of the two-element
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Fig. 6. Measured and calculated impedance values (including either
dispersion and launcher parasitics or dispersion, launcher parasitics,
and impedance discontinuity parasitics as indicated) for transformer
structures on plastic and alumina substrates at 10 GHz. (a) Launcher
OSM 244-4A, ¢ = 2.3, h = 10 mil. (b) Launcher OSM 244-4A,
& = 9.9, h = 25 mil. -

model described by the equations is confirmed using a variety of
quarter-wave transformer structures. It is shown that at X-band
frequencies, the effect of the imipedance discontinuity parasitic
reactances is significant, much larger in fact than that of the dis-
persion of the effective dielectric constant.
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Microwave Measurement of Dielectric Constant of Liquids
and Solids Using Partially Loaded Slotted Waveguide
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Abstract—An accurate method is described for the measurement
of the dielectric constant of liquids and solids. The dielectric mate-
rial partially loads a slotted rectangular waveguide and the guide
wavelength is measured for two different thicknesses of the di-
electric. The guide wavelengths are related to the dielectric con-
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